On Sunday, May 15th, 2022, we will be able to view a total eclipse of the Moon (weather permitting) from Southern Vancouver Island, British Columbia, Canada. The Moon will be in full eclipse after rising from the southeastern horizon, remaining fully eclipsed for about an hour before transitioning into a partial phase as it climbs in altitude and moves to the south. The Lunar Eclipse will end just before midnight.
Enlarge this video to view details for the Lunar Eclipse timing and phases. Depiction of this particular Lunar Eclipse is as viewed from Victoria – generated by Starry Night Pro Plus 8 and captured using Snagit 2022.
This is a perfect opportunity to visually observe this beautiful celestial event, and possibly capture some photographs from a location with an unobstructed view to the east and south.
Total Eclipse Begins
8:29PM
Moon Rises
8:42PM – probably visible 10-15 mins later
Greatest Eclipse
9:12PM
Total Eclipse Ends
9:54PM
Partial Eclipse Ends
11:51PM
Above Eclipse times are for Pacific Daylight Time (PDT) for the west coast of North America, and are calculated from UT as presented in the Observers Handbook 2022, pages 127-131.
A total lunar eclipse occurs when the Earth comes between the Sun and the Moon. During a lunar eclipse the Moon’s position traverses the Earth’s shadow. The Moon’s first contact with the Earth’s shadow is at the outer band of the shadow called the penumbra. The light falling on the Moon is progressively blocked until at the moment of total eclipse the Moon is completely in the darkest central area of the Earth’s shadow called the umbra. At the point of total eclipse the process starts to reverse itself until the Moon is totally out of the Earth’s shadow.
Glossary
limb – the outer edge of the Moon
penumbra – the outer band of the Earth’s shadow
umbra – the darker central area of the Earth’s shadow
partial eclipse – the Moon is positioned within the penumbra
total eclipse – the Moon is positioned totally within the umbra
Observing Tips
What do you need?
Everything from your eyes, binoculars and telescope are suitable. Bear in mind this is a long process, so dress warmly and bring a chair if you want to be comfortable.
Find yourself a location that has a clear horizon view to the east and south especially if you wish to view the early fully-eclipsed stage. Observing from a hill will help you spot the rising Moon earlier than if you observe from lower elevations or sea level.
Keep a log of what you see and note the time. Pay attention to how much of the light on the moon is obscured and if there are any colouration changes. During the total eclipse the Moon will take on a deep orange-red colour. The colour of the Moon is a function of contaminants in the atmosphere and varies from year to year.
A good observing project for this long-lasting eclipse will be to observe the craters on the Moon as the eclipse progresses. Craters will be immersed and emerge from the Earth’s shadow on the Moon at times specified in the Observers Handbook 2022, page 131.
2019 Total Lunar Eclipse from Victoria – composite photo by Joe Carr
Photographic Tips
Equipment
Any camera with the capability of setting shutter speeds and aperture settings manually will do fine. The ability to use interchangeable lenses will be an advantage for more detailed images of the Moon. For the darker parts of the eclipse, eg. totality you should use a tripod support for best results. If you have access to a telescope you can try capturing the event using prime focus techniques through the telescope optics.
Settings
Today’s digital cameras are very sensitive to light reflected by the Moon. Use ISO 400 to ISO 800 and a long telephoto lens or zoom setting. Smartphones and point-and-shoot digital cameras will not produce rewarding photos of the eclipsed Moon, but can be useful for taking panoramic shots of your surroundings which include the eclipsed Moon.
Technique for smartphone cameras
Smartphone cameras typically do not support manual settings, so using them to capture a lunar eclipse will be less rewarding than using more capable cameras. That said, smartphone cameras can be held up to a telescope eyepiece to capture an image of the Moon. Aligning the tiny lens to the eyepiece can be tricky, however there are platforms made to clamp onto an eyepiece barrel which will hold smartphones steady enough to take acceptable photos of the Moon, including the eclipsed Moon.
Technique for interchangeable lens cameras
The simplest eclipse pictures can be taken with manual settings on your camera and a normal lens, preferably supported by a tripod. For best results use a cable release to minimize vibration. Images taken in this fashion result in a small lunar image. This is why it is preferable to use a telephoto lens to photograph the Moon.
For a full frame camera try a 200mm lens or even better, a 500mm lens or higher. You may also use teleconverters to increase magnification, these typically come in 1.4x and 2x strengths. Their downside is they reduce the effective aperture of your optical system. A 1.4x teleconverter will decrease your effective exposure by 1 stop, a 2x teleconverter will decrease your effective exposure by 2 stops. Work out your effective aperture of your optical system ahead of time so you don’t have to think about it on the night of the eclipse.
Note for the smaller sub-full frame sensors of some digital cameras you gain an extra advantage as the focal length of the lens is effectively magnified by a factor. For example a Nikon DX body your 200mm lens would be effectively 300mm.
APS-C Nikon DX, Pentax : 1.5x
APS-C Canon EF-S : 1.6x
Four Thirds : 2x
Example:
Focal Length
Aperture
Effective Focal Length with 2x teleconvertor
Effective Aperture with 2x teleconvertor
180mm
2.8
360mm
5.6
480mm
6.8
960mm
13.6
To achieve any higher magnification than what is stated above you will have to use a telescope at prime focus. For this your manual camera does need to have the capability of using interchangeable lenses. For prime focus you will use the telescope optics as your interchangeable lens. To attach your camera to your telescope you will need two things a T-adapter that fits your camera and a telescope camera adapter that fits your telescope.
The telescope camera adapter is designed to fit in the focusing tube of your telescope and is threaded to accept the T-adapter of your camera. With the magnification involved with telescopic optics it is likely that you will need to use a tracking mount. Preferably the mount should be able to track at lunar speed as opposed to sidereal but if the shutter speeds chosen are shorter than 1 or 2 minutes this is not critical.
Exposure times are the next consideration. The following exposure times are based on a medium ISO setting and an effective aperture that would be common with a long telephoto and teleconverter combination. Exposures may vary with your equipment based on ISO speed and effective aperture. The Danjon Lunar Eclipse Luminosity Scale has been included to provide better guesstimates for totality.
Exposure Times: based on ISO 400
Full Moon
1/500 second at f/16
1st Contact
1/250 second at f/16 see note 1.
2nd Contact
1 second at f/16 see note 2.
Totality *see table below
L = 4 :
4 seconds at f16
L = 3:
15 seconds at f16
L = 2:
1 minute at f16
L = 1:
4 minutes at f16
3rd Contact
1 second at f/16 see note 2.
4th Contact
1/250 second at f/16 see note 1.
* Danjon Lunar Eclipse Luminosity Scale
L = 1
dark eclipse; lunar surface details distinguishable only with difficultly
L = 2
deep red or rust coloured eclipse; central part of the umbra dark but outer rim relatively bright
L = 3
brick-red eclipse; usually with a brighter (frequently yellow) rim to the umbra
L = 4
very bright copper-red or orange eclipse, with a bluish, very bright umbral rim
Note 1. 1st and 4th contact times given for the partial phases are biased for the light part of the Moon. Remember you are dealing with vastly different exposures between the light and dark parts of the Moon during eclipse. The bias of about 1 stop minus avoids overexposure of the dominant bright area of the Moon.
Note 2. 2nd and 3rd contact times given for the partial phases are biased for the dark part of the Moon. The bias of about 1 stop plus is a good strategy for negative film not quite so good for slides and digital capture given they don’t tolerate overexposure well.
The exposure times are only recommendations. Remember the cardinal rule about photography … bracket. Always try exposures plus and minus your chosen exposure. This gives you a better chance at getting usable results. Let’s all hope for clear weather. If you have any questions please send email to David Lee at davidflee7331@gmail.com.
David Lee – original text Joe Carr – updated for 2022 Brenda Stuart – illustrations
Chris Boar is a self professed Apollo program space nerd, having met 12 Apollo astronauts including 4 moonwalkers. This presentation is about his visit to Johnson Space Center in Houston back in November 2019, interspersed with tales of meeting the Apollo Astronauts. Chris attended the JSC Level 9 VIP tour, which includes visits to NASA’s Neutral Buoyancy Lab, where current astronauts train for spacewalks. Also visiting “Building 9” containing mockups of the International Space Station, Soyuz, and SpaceX hardware. And finally visiting the current ISS Mission Control Center, and personal highlight of the tour for Chris, stepping inside the recently restored historic Apollo Mission Control room, a designated US National historic landmark.
Chris Boar – Apollo Mission Control room
Chris Boar is the President of the Nanaimo Astronomy Society and an avid Apollo space nerd along with being a keen astrophotographer. Chris is a full time professional photographer living in Nanaimo shooting weddings and real estate.
2019 visit to Johnson Space Center in Houston
VIP Level 9 Tour – 4-5 hours
Lunar Exploration Module (LEM)
Neutral Buoyancy Lab
Met Micheal Collins: Gemini 10, Apollo 11
ISS Mission Control
Saturn V rocket with F1 engines
Apollo 8 mission
Jim Lovell – Gemini 7, 12, Apollo 8, 13
Space Vehicle Mockup building – ISS, SpaceX, Soyuz
Apollo 9 mission
Alan Bean, Apollo 12 LMP, Skylab II
2016 Spacefest
Restored historic Apollo Mission Control room – all original and working consoles
Apollo 13 mission – Jim Lovell, Fred Haise, Jack Swigert
Apollo 15 mission – Dave Scott, LEM
Apollo 16 mission
Apollo 17 mission – Gene Cernan, the last man on the Moon
Artemis Mission Launch coming up – Canadian Space Agency is looking for promotion to the public by RASC. April 16th FDAO event is proposed with a speaker from CSA.
GA is online again this year – June 24-27
Virtual observing across the country on two evenings – solar observing from Victoria?
Edmonton Astrophotos – Dave Robinson
Bi-marathons – Messier & running marathon in the same night
Andromeda Galaxy & Ha regions & Cepheid Variable VI – Abdur Anwar
Artemis 2 mission will take humans around the Moon
The Ukraine war will probably affect space launches from Baikonur Cosmodrome in Russia. Other space exploration may be affected. Discussion about International Space Station.
Bill Weir
Equatorial Poncet platform for the 20″ Truss Dobsonian built by Guy Walton is now working again
Will be used at the Centre of the Universe for public viewing when restrictions permit events
IAU switched east and west references for the Moon in 1961
Mare Orientale is only visible to this degree every few years
A Lunar Alpine Quest – Reg Dunkley
Original presentation to Victoria Centre on Nov 6, 2017
Dorothy Paul – sketch of lunar mountains from the 2017 Solar Eclipse
Reg took a photo of the same area at the 2017 Solar Eclipse and measured the height of one of the mountains on the Moon and the height of the solar chromosphere
Identified the particular mountain using Solar Eclipse Maestro software and some trigonometry from Lunar Reconnaisance Orbiter (LRO)
Schluter Crater is likely the candidate for the gap in the corona imaged by Reg
Brock Johnston showed a photo of the partial eclipse featuring similar “bumps” in the partial eclipse line
Edmonton astrophotos – Dave Robinson
JWST telescope in a star field time lapse imaged by Anwar Abdur
Jan 28, 2022 text observing report from Luca Vanzella – Orion & Auriga and NGCs in Cancer, Gemini, Monoceros
Seal of the RASC – “Quo Ducit Urania” (i.e. where Urania leads, we follow)
Urania is 1 of 9 Muses of the Arts in Greek Mythology
Uranometria star atlas by Johann Bayer (1603) – published and sold by Sky & Telescope (Willman Bell section)
Early computer memories
LGP-30 tube-based computer used at the University of Alberta in Edmonton by John McDonald in 1958
Reminisces from various members about early computers, calculators, slide rules, and other computing devices and programming languages they used decades ago.
Lunar Puzzles – Randy Enkin
100-piece from NASA
1000+ piece from Cobble Hill
1000 piece from Four Point
3-D printed Moon puzzle – Randy and his daughter assembled it
Reports from Lauri Roche
2022 RASC Calendars have still not arrived
Sky Cultures of the World: RASC World Asterisms Program – Charles Ennis, 1st VP with RASC National – FDAO Star Party – this Sat, Jan 22nd 7-9PM – available on Zoom and Youtube
Eclipses for 2023 and 2024 – Education & Public Outreach Committee task force headed by Randy Attwood. Thousands of eclipse glasses will be available and sent to RASC Centres. Members can participate on the committee – contact Lauri.
Mirror Segment Deployment Tracker – activating the actuators behind the mirror segments
JWST enters a halo orbit around L2 position this Sunday, Jan 23rd
Astro Cafe next week – Jan 24, 2022
Dr. Tanya Harrison, “a professional Martian” – our Astro Cafe speaker next week
David Lee will be hosting
Scarlett Caterpillar Club – a parasitic fungus Bill Weir found near the observatory at Pearson College
Extras
NASA 3D Resources – 3D models of equipment, models of celestial and solar system objects, space missions (like JWST). Various media for download: fly-throughs, interactive visualizations, 3D printer files, stereo images.
Ah 2021. What a strange trip around the Sun! I am writing this letter on the day of the winter solstice. There is a waning gibbous moon shining high in the east, when I go to bed, and it is high in the west to greet me in the morning. I take great solace in watching and thinking about the dependable motion of the Earth through the Universe, while so much of life and news this year has left me feeling unsettled.
Randy Enkin using his sextant
Nearly as dependable as the astronomical objects has been you, our astronomical community. I am so pleased when I see the 30 or 40 of us gather each Monday evening at our virtual Astro Café. We are an appreciative and supportive community. Look at all the different skill sets and experiences that get shared every week. And look at those beautiful photos and sketches that we have created. I particularly wish to mention the personal observatories (I know of 3!) that are getting designed and built by members of our centre, as well as the fantastic work by our technical committee in upgrading the Victoria Centre Observatory.
Our group has motivated me to try new astro-projects – whether observing sunspots with a solar telescope borrowed from the Centre (thanks to the capable curation of our telescope collection by Sid Sidhu), or star hopping to those faint fuzzies that you deep space observers like. And I love the expressions of appreciation when I show off my lunar sketches to our crowd.
Do remember that our community survives on the strength of our volunteerism. We have a specific requirement this year for a new secretary and a new vice president. Don’t feel you aren’t up to the job! I still feel like a newbie in the role of president, but there is no shortage of good council from the many past executives who continue to be active. Come join us on the inside, and you will feel even more affection for the Centre.
I wish us all a fruitful and fulfilling new year, with many clear skies.